Training School on Snow Observations and Data Assimilation

Preliminary program, topics and trainers

Lectures

Introduction to NWP/hydrology models and their snow data assimilation

- Overview of the forecast and analysis of snow in NWP models Patricia deRosnay
- Overview of hydrological models and assimilation of snow information in hydrology Albrecht Weerts, Adam Winstral
- Detailed snowpack models and usage of observations therein (including inverse methods) Michael Lehning

Methods of data assimilation

- Introduction to the data assimilation methods applicable for snow Patricia deRosnay
- Optimal interpolation for spatialization in NWP Ekaterina Kurzeneva
- Data assimilation methods in different snow models
 Ekaterina Kurzeneva, Michael Lehning, Adam Winstral

Snow observations for the NWP, hydrology and snowpack models

- Conventional snow (depth) observations available for assimilation Martin Lange
- Remote-sensing optical wavelength snow observations (snow extent and albedo)

 Terhikki Manninen
- Remote-sensing microwave data on snow Ali Nadir Arslan
- Emissivity models Observation operators for DA Ali Nadir Arslan, Terhikki Manninen

Snow model and DA applications

- Snow-vegetation interactions & SURFEX snow DA Patrick Samuelsson
- Observing and modeling of snow on mountains and glaciers

 Antonella Senese, Aynur Sensoy, Daniele Bocchiola, Carlo de Michele
- Case studies in hydrology *Aynur Sensoy, Albrecht Weerts, Adam Winstral*

Possible exercises for the student groups

- HUT model: forward modelling and inversion of passive microwave data
- Stand-alone snow DA + forecast with SURFEX for Sodankylä
- Stand-alone snow model at stations for snow DA (Moscow model, COSMO)
- Hydrology: Assimilate your basin
- OI offline: learning optimal interpolation for snow

Forni glacier field trip