Snow reflectance measurements

Jouni Peltoniemi University of Helsinki & FGI

Talk at Pyry days 2. November 2015

With contributions from Maria Gritsevich, Teemu Hakala, and partners from FGI, FMI, UH, AU, Iceland, et al

Background

- Remote sensing is based on observing some differences in target properties
 - Shapes
 - Brightness
 - Spectrum
 - Directional effects
 - Polarisation
- Remote sensing needs good model for the reflectance of snow
 - Physical
 - Invertible
 - Validatable
- Modelling needs lot of measurement data
 - Natural
 - Extremely processed

Basics

- Bidirectional reflectance factor (BRF)
 - Observed reflectance depends on 4 angles (3 with symmetric targets)
 - R=I/I Lambert
 - I(ε,Φ)=cos ι/π $R(ε,Φ,ι,Φ_0)$ $F_0(ι,Φ_0)$
 - To model polarisation, I=[I,Q,U,V]
 and R= 4*4 matrix
 - Degree of linear polarisation
 P=-Q/I

FIGIFIGO

- <u>FI</u>nnish <u>Geodetic Institute's FI</u>eld <u>Goniospectrometer</u>
- Measures BRF in full hemisphere
- Automated zenith turn, manual azimuth turn
- ASD FieldSpec Pro FR
 - 350-2500 nm
 - Changeable optics
 - Field of view 5-25 cm
- Includes computer turned linearly polarizing optics (broadband Glan-Thompson calcite wedge), Stokes I,Q,U
- Portable, mounting time 10 minutes, weight 40
- Fast, 10 to 30 minutes for full BRF without or w post the following main components: casing, measurement arm, rugged computer, and sunphotometer on a tripod.

The active optics system is located horizontally at the top of the measuring arm, and is looking down to the target through a mirror. FIGIFIGO consists of the following main components: casing, measurement arm, rugged computer, and a sunphotometer on a tripod.

Horizontal rotation

Target area

FGI reflectance library

- webdav://webdisk.kotisivut.com/fgi/Reflectance_Library/
 - Username: BRFuser, password: BRFuseri
- All data are free for normal scientific use
- Currently the library contains BRF/HDRF measurements of over 150 samples
 - Snow wet and dry, new and old, natural and contaminated
 - Gravel, Sand
 - Volcanic stuff
 - Vegetation
 - Asphalts, concrete
- Status still experimental, needs some efforts to use
- A pdf datasheet is produced from each library file
 - Shows contents of the file
 - Describes the reflectance properties of the sample

New – old, spectrum

- New snow has much smaller grains, and less absorption
- Also small differences in anisotropy and polarisation

Dry – wet differences, polarisation

- Dry snow polarises more in the forward than wet snow
- Also small differences in the spectrum and aniotropy
- No signal alone sufficient

Natural-dirty, principal BRF

- All contaminants also darken snow in visual bands, but in NIR may be vice versa
- Sometimes backscattering can be even enhanced

Radiative transfer modelling

- Brand new model from 1987-1993 with small upgrades
- Initialize a thin layer using Monte Carlo ray—tracing, assuming large Gaussian densely packed snow grains
 - 1 hour each
- Combine a snow pack from different initialization layers using adding/doubling and interpolation
 - < minute
- Arbitrary size distribution using scaling
- Full polarisation
- Limited spectrum (some memory issues with compiler)

Top measurement, bottom model

New snow principal BRF, oldsnow polarisation, dirty snow albedo

Conclusions

- · We know a lot of snow reflectance
- Still open
 - Effects of small impurities
 - Quantitative roughness
 - Grain shapes
 - Cause of enlargened forward polarisation
- Todo with models
 - Roughness and 3D structures
 - Crystal forms
 - Wave effects
- Todo with measurements
 - Presice polarisation, including circular (V) and illumination control
 - Backscattering
 - Natural and processed roughness
 - Mixtures, smaller and larger contamination ratios
 - Time series of metamorphism
 - Better characterization of snow from wavelength scales to topographic scales